Anomalous dimensions at large charge for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>×</mml:mo><mml:mi>U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> theory in three and four dimensions

نویسندگان
چکیده

Recently it was shown that the scaling dimension of operator $\phi^n$ in $\lambda(\bar\phi\phi)^2$ theory may be computed semiclassically at Wilson-Fisher fixed point $d=4-\epsilon$, for generic values $\lambda n$, and this verified to two loop order perturbation leading subleading $n$. This result subsequently generalised operators charge $Q$ $O(N)$ up four loops $Q$. More recently, similar semiclassical calculations have been performed classically scale-invariant $U(N)\times U(N)$ dimensions, loops, once again Here we extend verification loops. We also consider corresponding three similarly verifying results theory.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal anomalous dimensions at large spin and large twist

In this paper we consider anomalous dimensions of double trace operators at large spin (`) and large twist (τ) in CFTs in arbitrary dimensions (d ≥ 3). Using analytic conformal bootstrap methods, we show that the anomalous dimensions are universal in the limit ` τ 1. In the course of the derivation, we extract an approximate closed form expression for the conformal blocks arising in the four po...

متن کامل

Repeated Angles in Three and Four Dimensions

We show that the maximum number of occurrences of a given angle in a set of n points in R3 is O(n7/3), and that a right angle can actually occur Ω(n7/3) times. We then show that the maximum number of occurrences of any angle different from π/2 in a set of n points in R4 is O(n5/2β(n)), where β(n) = 2O(α(n) 2) and α(n) is the inverse Ackermann function.

متن کامل

A-models in three and four dimensions

We introduce and study a new 3d Topological Field Theory which can be associated to any compact real manifold X. This TFT is analogous to the 2d A-model and reduces to it upon compactification on an interval with suitable boundary conditions. It plays a role in 3d mirror symmetry as well as in the physical approach to the geometric Langlands duality. A similar TFT can be defined in four dimensi...

متن کامل

Theory of charge nucleation in two dimensions.

Thermal nucleation of two-dimensional charges is studied. It is argued that the probability of N charge pairs to appear has a simple asymptotics for large N: p(N)=[q(c,beta,micro)](N)/Z(beta,micro), where q(c,beta,micro) is a function of charge concentration c, inverse temperature beta, and chemical potential micro, and Z(beta,micro) is the partition function. We present q(c,beta,micro) as a li...

متن کامل

The Theory of Anomalous Scale Dimensions

Using the previously gained insight about the particle/field relation in conformal quantum field theories which required interactions to be related to the existence of particle-like states associated with fields which necessarily have an anomalous contribution in addition to their canonical scale-dimensions, we set out to construct a classification theory for the spectra of anomalous dimensions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2021

ISSN: ['2470-0037', '2470-0010', '2470-0029']

DOI: https://doi.org/10.1103/physrevd.104.105017